A New Structure-Based QSAR Method Affords both Descriptive and Predictive Models for Phosphodiesterase-4 Inhibitors
نویسندگان
چکیده
We describe the application of a new QSAR (quantitative structure-activity relationship) formalism to the analysis and modeling of PDE-4 inhibitors. This new method takes advantage of the X-ray structural information of the PDE-4 enzyme to characterize the small molecule inhibitors. It calculates molecular descriptors based on the matching of their pharmacophore feature pairs with those (the reference) of the target binding pocket. Since the reference is derived from the X-ray crystal structures of the target under study, these descriptors are target-specific and easy to interpret. We have analyzed 35 indole derivative-based PDE-4 inhibitors where Partial Least Square (PLS) analysis has been employed to obtain the predictive models. Compared to traditional QSAR methods such as CoMFA and CoMSIA, our models are more robust and predictive measured by statistics for both the training and test sets of molecules. Our method can also identify critical pharmacophore features that are responsible for the inhibitory potency of the small molecules. Thus, this structure-based QSAR method affords both descriptive and predictive models for phosphodiesterase-4 inhibitors. The success of this study has also laid a solid foundation for systematic QSAR modeling of the PDE family of enzymes, which will ultimately contribute to chemical genomics research and drug discovery targeting the PDE enzymes.
منابع مشابه
Development of Improved Models for Phosphodiesterase-4 Inhibitors with a Multi-Conformational Structure-Based QSAR Method
Phosphodiesterase-4 (PDE-4) is an important drug target for several diseases, including COPD (chronic obstructive pulmonary disorder) and neurodegenerative diseases. In this paper, we describe the development of improved QSAR (quantitative structure-activity relationship) models using a novel multi-conformational structure-based pharmacophore key (MC-SBPPK) method. Similar to our previous work,...
متن کاملA comparative QSAR study of aryl-substituted isobenzofuran-1(3H)-ones inhibitors
A comparative workflow, including linear and non-linear QSAR models, was carried out to evaluate the predictive accuracy of models and predict the inhibition activity of a series of aryl-substituted isobenzofuran-1(3H)-ones. The data set consisted of 34 compounds was classified into the training and test sets, randomly. Molecular descriptors were selected using the genetic algorithm (GA) as a f...
متن کاملApplication of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors
One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...
متن کاملQSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method
COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...
متن کاملQSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method
COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...
متن کامل